

# Welcome to the workshop! Project Airborne Inversion of Rayleigh waves (AIR)

AIR workshop, 2024





# Seismo-acoustics: linking subsurface and atmosphere

- Earthquake epicentral motion and seismic waves couple to the atmosphere.
- Recording is possible through ground infrasound sensors, balloons, or remote sensing (GNSS, Airglow imagers)
- Can we extend infrasound inversion problems to study subsurface processes ?



### **AIR: Using seismo-acoustics to explore Venus' interior**



#### Detectability

- Determine likelihood of observable magnitudes/mechanisms/ distances
- Assess detectability of seismic or direct volcanic infrasound
- Assess the potential of quake infrasound for subsurface and source inversion

#### Source characterization

- Estimate distribution of focal mechanisms and focal depths
- Estimate spatial distribution of active volcanoes

# Workshop: Pushing for Venus seismology & collabs

Post-workshop document sharing Building collaborations within/outside the community



Presentations

Sharing recent seismo-acoustic

& Venus science results



Interactive sessions

Identifying challenges/opportunities for future geophysical missions



| September Monday 16th   Teams link: click here |                               |                                                                                                                                                       |  |
|------------------------------------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Time PST (Time CET)                            | 8:00 - 8:15 (17:00 - 17:15)   | Introduction                                                                                                                                          |  |
|                                                | 8:15 - 8:45 (17:15 - 17:45)   | Marouchka Froment: First results of the AIR project<br>Related presentation: P Froment_internoise_AIR.pptx                                            |  |
|                                                | 8:45 - 9:15 (17:45 - 18:15)   | Siddharth Krishnamoorthy: JPL balloon campaigns                                                                                                       |  |
|                                                | 9:15 - 9:30 (18:15 - 18:30)   | Break                                                                                                                                                 |  |
|                                                | 9:30 - 10:00 (18:30 - 19:00)  | Anna Gülcher: Geodynamic modelling of Venus' tectonics and implications for seismicity <i>Related paper:</i> <b>•</b> gulcher_coronae_simulations.pdf |  |
|                                                | 10:00 - 11:00 (19:00 - 20:00) | Interactive session #1: Discussion about instrumental challenges<br>led by Siddharth Krishnamoorthy                                                   |  |



| September Friday 20th   Teams link: click here |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|------------------------------------------------|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Time PST (Time CET)                            | 8:00 - 8:30 (17:00 - 17:30)   | <ul> <li>Raphael Garcia &amp; Iris Van Zelst: Results from the <u>ISSI workshop</u> titled "Seismicity on Venus: Prediction &amp; Detection" <i>Related papers/preprints:</i></li> <li>JGR Planets - 2024 - Zelst - Estimates on the Possible Ann</li> <li>Garcia_preprint_seismoacoustic_detection_venus.pdf</li> <li>Maia_seismogenic_thickness_Venus.pdf</li> </ul>                                                                         |  |
|                                                | 8:30 - 9:00 (17:30 - 18:00)   | Solene Gerier: Analysis of post-seismic infrasound recorded by pressure sensors aboard stratospheric balloons<br><i>Related paper:</i> gerier_modeling_seismoacoustic.pdf<br><i>Asbtract:</i> Infrasound are produced by natural events such as explosion, volcanic eruptions and earthquakes ; and the infrasound analysis can provide information about the source of the low-frequency sound and about the medium in which waves propagate. |  |
|                                                | 9:00 - 9:15 (18:00 - 18:15)   | Break                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                                                | 9:15 - 10:30 (18:15 - 19:30)  | Interactive session #2: Discussion about seismo-acoustic modeling and inversion challenges led by Marouchka Froment                                                                                                                                                                                                                                                                                                                            |  |
|                                                | 10:30 - 11:00 (19:30 - 20:00) | Wrap up                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |







### Airborne Inversion of Rayleigh waves (AIR) First results

AIR workshop September 16, 2024

Marouchka Froment, Quentin Brissaud, Sven Peter Näsholm, Celine M. Solberg, Tina Kaschwich and Antoine Turquet





# **AIR preliminary results: Detecting and inverting**

#### Detectability

- How do seismicity estimates on Venus affect the detectability of venusquakes?
- Can volcanic processes be detected?
- How long should the balloon mission be?





#### Inversion

- How sensitive is the inversion to the number of balloons and phase type detected?
- What do the posterior distribution of subsurface velocity parameters look like?
- Can we validate our model on real data?



#### **A PHSA-style detection framework**

How likely are we to detect a seismo-acoustic signal with a given Signal-to-Noise Ratio (SNR) from a balloon platform?



#### **Defining the rate of observable venusquakes**



#### **Defining the rate of observable venusquakes**



van Zelst, I., Maia, J.S., Plesa, A.-C., Ghail, R., Spühler, M., 2024. JGR: Planets 129, e2023JE008048. 10.1029/2023JE008048 Sabbeth, L., Smrekar, S.E., Stock, J.M., 2023. EPSL 619, 118308. 10.1016/j.epsl.2023.118308

wrinkles

This study -Tectonic

1021

1022

This study – Wrinkle Ridges

#### **Detecting venusquakes – tectonic region scaling**





# Accounting for our flying sensor...



#### A balloon drifting at a constant altitude with horizontal winds estimated from the Venus Climate Database (VCD)

Lebonnois, S., Hourdin, F., Eymet, V., et al., 2010. *Journal of Geophysical Research: Planets 115*. <u>10.1029/2009JE003458</u> Lebonnois, S., Millour, E., Martinez, A., et al., 2021. *European Planetary Science Congress*. EPSC 2021. <u>10.5194/epsc2021-234</u> Martinez, A., Lebonnois, S., Millour, E., et al., 2023. *Icarus* 389, 115272. <u>10.1016/j.icarus.2022.115272</u>





### Accounting for our flying sensor...



NORSAR 14

#### Let's simulate a lot of balloon flights!





different drop off locations

NORSAR 15

### What about wrinkle ridges?

#### Increasing mission duration Mission 15 days Mission 30 days Mission 45 days Mission 60 days 140 140 140 140 SNR Probability Density Function 1.0 120 120 120 120 2.0 100 100 100 100 5.0 80 80 80 80 60 60 60 60 40 40 40 40 20 20 20 20 0 0 0 0.06 0.08 0.10 0.00 0.02 0.06 0.08 0.10 0.00 0.04 0.06 0.08 0.10 0.00 0.04 0.00 0.02 0.04 0.04 0.02 0.02 0.06 0.08 Detection Probability Detection Probability Detection Probability Detection Probability

Maximum probability of < 7%





010

### How to account for the volcanic activity?



Wilding, J.D., Zhu, W., Ross, Z.E., Jackson, J.M., 2023. The magmatic web beneath Hawai'i. *Science* 379, 462–468. <u>10.1126/science.ade5755</u>



17

# Simulating flights for varying drop off location and time

Each cell corresponds to a flight with a unique combination of drop off location and time





# Simulating flights for varying drop off location and time



NORSAR 19

### Conclusions

- Realistic seismicity estimates tend to produce **venusquake rates much lower than Earth.**
- Long mission durations (>>2 months) seem to be needed to obtain large detection likelihood of high SNR signals.
- Seismo-volcanic events could lead to an increase of detection probabilities over multiple years.
- Extra steps before publication
  - Refining seismic velocity models based on expected composition.
  - Modeling infrasound from volcanic explosion and collapse events.
  - Assessing the **impact of topography** on seismo-acoustic coupling.





# **AIR preliminary results: Detecting and inverting**

#### Detectability

- How do seismicity estimates on Venus affect the detectability of venusquakes?
- Can volcanic processes be detected?
- How long should the balloon mission be?





#### Inversion

- How sensitive is the inversion to the number of balloons and phase type detected?
- What do the posterior distribution of subsurface velocity parameters look like?
- Can we validate our model on real data?



# What is the data : balloon seismology on Earth





Zoom on the Rayleigh Wave arrival.

The 14/12/2021 Flores Sea earthquake recorded by Strateole2 balloons.

#### Good agreement between ground seismic and airborne infrasound recordings.

Garcia, R. F. et al. *Geophysical Research Letters* **49** (2022), <u>10.1029/2022GL098844</u> Brissaud, Q. *et al. Geophysical Research Letters* **48**, (2021), <u>10.1029/2021GL093013</u>



Event R1b of the 2019 Ridgecrest sequence recorded by Tortoise balloon.

#### Inverting the subsurface from coupled earthquake signals

**Hypotheses:** Propagation of RW from ground to balloon brings no distortion. Venus signals shall have higher SNR than Earth's Alaska pressure recordings of earthquakes are a good proxy to test the inversion framework.

**Data:** Mw8.2 event on 29/07/21. **The "true" model:** 4-layer model simplification of Berg et al. (2019) at the three stations.

06:17

Berg, E. M. et al (2020) *JGR: Solid Earth* **125**, <u>10.1029/2019JB018582</u> Macpherson et al. 2023 (2023) *BSSA*, **113**, <u>10.1785/0120220237</u>

10

5

-5

-10

06:14

Pressure / [Pa]



Time on 29-07-21

06:23

06:20

#### **Picking the Rayleigh and S waves**



Unfiltered signals at two different distances: Frequency-Time ANalysis is used to pick the RW by hand. S picks are the values predicted from a 1D model, associated to an uncertainty of 5s.

24

### Inversion method



**Distribution of parameters** 

### Inversion results: 3 signals with S and Rayleigh waves



 $\mathbb{N}$ 2745 26

# Inversion results: parameters and histograms



Parameters less constrained: Source depth, interface depth.



#### Inversion with a single balloon



28

#### For comparison: Priors for a single balloon



29

# The next steps: a fully airborne inversion

#### The Flores Earthquake

- Subsurface not well known in the region.
- A challenge in picking the RW and other picks: presence of a resonance (low velocity layers? Scattering?)
- Need better understanding of balloon oscillations at low frequency.





#### An unsteady sensor...



Balloons position determined by buoyancy, wind forces, gravity. Presence of a **Neutral Buoyancy Oscillation** = balloon normal mode.

Good coherence up to GPS Nyquist frequency, perhaps even higher: **broadband energy bursts** follow altitude changes.

Massman, W. J. Journal of Applied Meteorology 17, 1351-1356 (1978).



# Improving the SNR at low frequency

There is an exponential relation between pressure and altitude: use the low frequency GPS data to correct the pressure recordings



### **Conclusion: Inversion**

- 1. Inversion framework was tested with signals of the Alaska network.
- 2. With 3 balloons and simple RW picking, subsurface velocities can be constrained within 1 km/s.
- 3. One balloon cannot suffice to investigate Venus interiors, without some additional constraints on source location and time.
- 4. Validation coming soon with the Flores Earthquake.
- 5. Looking for new ways to "denoise" balloon signals and improve picking of the RW.





# This workshop: Instrumental challenges

- 1. Beamforming along balloon tether: how many sensors, what geometry?
- 2. Inertial Measurement Units (IMUs) VS mirobarometers ?
- **3. Several balloons** are needed. What are operational constraints: drop-off sequence, communication, maximum number?
- 4. What are the **constraints in bandwidth**, and will pre-processing be needed to send lightweight data back to Earth?
- 5. How to correct balloon noise below 0.05 Hz ? What is the **instrument response** of the balloon + sensors system ?
- 6. How can we estimate the differences in **environmental noise** between Earth and Venus?
- 7. How much does **corrosion** by the environment limit mission duration in the clouds?





# This workshop: Inversion challenges

- 1. Which **inversion method** is best adapted for seismo-acoustic inversions ? Is Bayesian Monte Carlo a good choice?
- 2. Other seismo-acoustic sources are possible: **meteors**, **volcanoes**. Can we identify and locate them ?
- 3. Modeling: are there simplifying **assumptions** on the propagation of seismo-acoustic waves that can safely be done ? Best **modeling techniques** ?
- 4. How could **airglow measurements** complement balloon measurements (dispersion, source localization...)
- 5. How can upcoming NASA/ESA missions help **constrain priors** of the interior of Venus?
- 6. How to design an efficient "Blind Test" for Venus, as done before InSight for Mars?





# Thank you for your attention

All feedback and suggestions are welcome !



#### Infrasound propagation on Venus?



Venus is a pressure cooker under a lid of clouds, very stable throughout the day: a challenge for ground-based seismology, but an advantage for infrasound studies!

Venus Climate Database outputs for pressure and temperature near the equator.



### Infrasound modeling – SPECFEM2D-DG

Simulation of the coupling of an earthquake with the atmosphere using SPECFEM2D-DG.

> Epicentral Infrasound generated just above the epicenter



Scattered body waves

#### Surface waves



### Infrasound modeling – SPECFEM2D-DG

Example of simulation outputs for a source with Mw 5 at 10 km depth and half duration 2 s.





#### Let's simulate a lot of balloon flights!

#### **Increasing SNR**



#### **Daily probability for wrinkle ridges**



wrinkles



# Simulating flights for varying drop off location and time





#### Inversion results: 3 signals Rayleigh waves, no S



43

### Picking the Rayleigh wave: example of balloon 16



![](_page_43_Figure_2.jpeg)

44

# Picking the Rayleigh wave: example of balloon 17

![](_page_44_Figure_1.jpeg)

![](_page_44_Figure_2.jpeg)

45

 $\mathbb{N}($ 

#### Balloon 15 and 07: a more difficult case.

UTC time on 14-12-2021

-30

-33

-36

-39

-42

-45

-48

-51

-54

![](_page_45_Figure_1.jpeg)

![](_page_45_Figure_2.jpeg)

![](_page_45_Figure_3.jpeg)

UTC time on 14-12-2021

![](_page_45_Figure_4.jpeg)

03:00 03:36 04:12 UTC time on 14-12-2021 03:00 04:48 03:36 04:12 UTC time on 14-12-2021

![](_page_45_Picture_7.jpeg)

# Improving the SNR at low frequency

There is an exponential relation between pressure and altitude: use the low frequency GPS data to correct the pressure recordings.

The correction in the time and spectral domain.

![](_page_46_Figure_3.jpeg)

![](_page_46_Picture_4.jpeg)

### **Different mission concepts for Venus seismology**

![](_page_47_Figure_1.jpeg)

From: Garcia, R. F. *et al.* Seismic wave detectability on Venus using ground deformation sensors, infrasound sensors on balloons and airglow imagers, *Preprint*, 2024, work of the International Space Science Institute (ISSI) team

**Shaded:** number of events per year for different magnitudes depending on Venus activity.

**Curves:** Minimum number of events per year as a function of magnitude required to measure **at least one** event of this magnitude over the mission duration. Different instruments have different estimated lifetimes: Seismometer = 1 day Balloon = 3 months

Airglow = 2 years

![](_page_47_Picture_6.jpeg)

#### Alaska data

Station and event considered (model at 9.0 km)

![](_page_48_Figure_2.jpeg)

Models extracted from Berg et al. (2020) and a 4-layer model reproducing the trend. The RW group velocity predicted from each model is shown.

Berg, E. M. et al (2020) *JGR: Solid Earth* **125**, <u>http://doi.org/10.1029/2019JB018582</u> Macpherson et al. 2023 (2023) *BSSA*, **113**, <u>https://doi.org/10.1785/0120220237</u>

![](_page_48_Figure_5.jpeg)

Coherence between pressure and vertical velocity traces

![](_page_48_Picture_7.jpeg)

#### Sensitivity analysis for models of the Flores sea

![](_page_49_Figure_1.jpeg)