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Abstract.

Venus’ evolution remains a mystery because of the lack of in-situ geophysical data to constrain
its interior structure. Recently-selected planetary missions including VERITAS (NASA), DAVINCI+
(NASA), and EnVision (ESA) will investigate the planet’s interior, surface, and atmospheric chemistry.
However, none of these missions includes sensors capable of probing Venus’ crustal and mantle5

properties with high accuracy. Ground deployments of seismometers are challenging on Venus due
to its high surface temperature and pressure. Instead, balloon pressure measurements and airglow
observations – monitoring of the continuous glow of the Venus’ upper atmosphere caused by chemical
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and radiative processes – have been suggested as compelling alternatives to surface deployments.
However, it is critical to accurately assess the potential of such missions under realistic conditions of10

geology, atmospheric states, network geometry, and seismicity scenarios using physics-based modeling.
Here, we employ a probabilistic framework to investigate detection probabilities as a function of
Signal-to-Noise Ratio (SNR) for airglow and balloon missions using numerical wave simulations,
thermodynamically-consistent seismic velocity models, and realistic seismicity models. Our results
demonstrate that the probability of detecting a single venusquake event at SNR > 1 over a 6-month15

mission is around 65% across an entire 3-balloons network of about 5000 km extent. We obtain over
90% probability when the venusquake monitoring is based on either nightglow or dayglow imager
data. Seismo-volcanic sequences could significantly enhance detectability if high seismic activity
occurs at multiple volcanoes. Longer duration missions that include both airglow and balloon-borne
sensors could therefore allow seismic wave measurements over a broader range of frequencies.20

Plain Language Summary. The interior of Venus remains a mystery because we lack seismic data.
Such data were key to constrain the Moon’s and Mars’ subsurface. While upcoming missions will
study Venus’ surface and atmosphere, they will not carry instruments capable of detecting seismic
waves from the ground. Because Venus’ surface is extremely hot and under intense pressure, deploying
traditional seismometers is challenging. As an alternative, scientists have proposed using high-altitude25

balloons and orbiting airglow cameras to detect pressure waves or light emissions in the atmosphere
that may be triggered by venusquakes. In this study, we apply physics-based models and probabilistic
methods to evaluate how well balloon and airglow observations would detect seismic events under
realistic atmospheric and geological conditions. We show that a balloon network covering about
5,000 km could detect at least one venusquake with up to 65% chance over a 6-month mission. The30

detection rates are even higher—above 90%—when using airglow observations from orbit. These
findings suggest that future missions combining these techniques will provide valuable seismic data
to reveal Venus’ internal structure.

∗Corresponding author: Quentin Brissaud (quentin@norsar.no)
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Key Points35

– We built a probabilistic framework to assess the detectability of venusquakes from its atmosphere
and space using physics-based simulations

– We obtain high detectability levels for 6 months-long missions combining balloons and airglow
giving a high-resolution view of the interior

– Prior seismic velocity models, noise levels, and wave periods are the most critical aspects driving40

detectability

1 Introduction

The evolution and present dynamics of Venus remain a mystery due to the lack of in-situ geophysical
data to constrain its atmosphere and interior structure. To address important scientific questions
regarding Venus’ past and present conditions and its habitability, NASA and ESA have selected45

three planetary missions that will investigate aspects of its deep interior, its surface, and atmospheric
chemistry (Widemann et al., 2023). However, the collection of seismic data, such as performed on
Mars by the InSight seismometer (Lognonné et al., 2023), is key to developing accurate and precise
models of the planet’s interior. Unfortunately, the high pressure and temperature conditions at the
surface of Venus will most likely prevent any long-duration deployments of seismic instruments beyond50

a few months (Kremic et al., 2020). Recently, the seismo-acoustic community has proposed new
methodologies, called balloon-based and airglow-based seismology, to alleviate the need for ground-
based measurements (Krishnamoorthy et al., 2019). As seismic waves couple to the atmosphere, they
excite low-frequency acoustic waves – infrasound – in the atmosphere which propagate to high altitudes.
These acoustic waves carry information about the source and the subsurface, allowing subsurface55

seismic imaging to be performed from high altitudes. Several detections of seismic waves in pressure
waveforms recorded by stratospheric balloon platforms have already been reported in recent years on
Earth (Brissaud et al., 2021; Garcia et al., 2022). Balloons equipped with microbarometers flying
in Venus’ cloud layer between 45 to 60 km altitude, where atmospheric pressure and temperatures
are similar to Earth’s surface, could therefore detect the small pressure fluctuations induced by60

Venusquake ground motion. At higher altitudes, above 90 km, acoustic waves can affect the transport
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of O2 atoms in the nightglow and their adiabatic temperature signature can perturb CO2 atoms in
the dayglow. Light emissions produced by such perturbations can be sensed by satellites equipped
with airglow cameras (Garcia et al., 2024).

Assessing the feasibility of balloon-borne seismology in the Venus context is critical in future65

mission concept design. In particular, it remains unclear what would be the required mission duration
to ensure the detection of significant seismic quakes. Interestingly, owing to Venus’ high-density
atmosphere, the coupling between the ground and the atmosphere is significantly stronger than on
Earth, which could enable the detection of lower-magnitude venusquakes (Averbuch et al., 2023).
Yet, the absence of global plate tectonics on Venus likely drastically reduces the occurrence of70

large-magnitude quakes (e.g., Van Zelst et al., 2024a). Recently, Garcia et al. (2024), referred to in
the rest of the paper as Garcia et al. (2024), provided a preliminary framework to address these
research questions for mission scenarios using either a ground-based seismic instrument, a single
atmospheric balloon equipped with a microbarometer, or an airglow imager. Garcia et al. (2024)
determined the minimum number of events needed to obtain an arbitrary 66% detection probability75

for a seismic event from each of these instruments. Garcia et al. (2024) concluded that about 100
Mw5 events over a 6-month balloon mission, or less than 10 events for an airglow mission should be
enough to ensure the detection of one seismic event with a 66% probability.

There are several limiting assumptions in Garcia et al. (2024) that deserve further investigation:
(1) The seismic activity was considered to be homogeneous over the whole planet (as in Van Zelst et al.,80

2024a), despite the non-uniform spatial distribution of regions with more seismically-active potential,
such as Venusian rifts, or dozens of “corona” structures with a non-random global distribution proposed
to be geologically active (Davaille et al., 2017; Gülcher et al., 2020; Cascioli et al., 2025) – circular
volcano-tectonics features defined by a (partial) ring of closely-spaced fractures; (2) Seismic amplitudes
were modeled using an empirical relationship relating magnitude to peak seismic velocity, which was85

designed for Earth scenarios. Thus, investigating the effect of seismic properties on detectability was
not possible; (3) Only single-instrument and single-balloon detectability was estimated. Yet, to retrieve
subsurface properties at various scales, multi-instrument combined airglow-balloon measurements
of the same events should be performed, as acoustic-to-airglow coupling is less efficient at high
frequencies (Kenda, 2018). This means that determining the probability of observing the same event90

across all instruments is critical for future missions; (4) Results were provided at 66% confidence
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level. Yet, mission designs should likely consider higher confidence levels to ensure the detection of
seismic events; (5) The study used a binary condition to define detectability, which is that signal
amplitudes exceed the noise level, but details such as the Signal-to-Noise Ratio (SNR), i.e., ratio of
amplitude over noise level, of detectable events were not considered. While this was a reasonable95

first step, the ability to detect signals at sufficiently high SNR is critical for successful subsurface
velocity inversions; (6) Finally, only seismic events of seismo-tectonic origin were considered, and
seismo-volcanic events were not specifically included in the analysis. Yet, recent volcanic activity on
Venus has been detected in Magellan data (Herrick and Hensley, 2023; Sulcanese et al., 2024) and
could constitute a major source of seismic waves.100

In this contribution, we build a more comprehensive physics-based probabilistic framework
to address these limitations and produce robust detectability estimates of seismic waves on Venus.
While Venus’ seismicity remains mostly unknown, here we consider and adapt two recently proposed
seismicity models (Sabbeth et al., 2023; Van Zelst et al., 2024a) to account for the spatial heterogeneities
in seismicity (Section 2.1). Instead of relying on empirical amplitude equations, we model the seismic105

wave propagation and coupling numerically, for realistic seismic and atmospheric media (Section 2.2).
Additionally, we produce detectability estimates for multi-instrument missions deploying balloon
networks, or combining a balloon and an airglow imager (Section 2.3). Importantly, our probabilistic
framework produces detection probabilities in terms of SNR, which facilitates sensitivity analysis at
any noise level (Section 3). Finally, we investigate the detectability of Earth seismo-volcanic sequences,110

serving as a proxy for volcanism on Venus (Section 4).

2 Methods

Our objective is to estimate the detection probability of seismic waves in balloon pressure signals
exceeding a given SNR along given balloon trajectories. This is based on a four-step procedure: (1) we
compute the probability of venusquakes, over a given magnitude, occurring at each surface location115

based on magnitude-frequency distribution models, (2) we determine the pressure amplitude at each
distance of venusquake-induced infrasound at the balloon altitude using numerical simulations, (3)
we estimate the likelihood of observing a signal above a given SNR from a fixed balloon location
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Figure 1. Seismicity and seismo-acoustic amplitude prediction models. (a) Tectonic settings on Venus as
considered in Van Zelst et al. (2024a), which were based on global geologic maps by Price and Suppe (1995);
Price et al. (1996), adapted with a down-selection of coronae based on recent suggestions of plume-induced
crustal recycling at certain coronae (Cascioli et al., 2025), (b) Global Wrinkle Ridge map from Bilotti and
Suppe (1999) used in Sabbeth et al. (2023), (c) Seismicity estimates used in this study, and (d) schematic
of the infrasound generation from seismic sources and detection by microbarometers onboard high-altitude
balloon or in the airglow layers from an airglow imager.

using steps (1) and (2), and (4) we integrate the detection likelihood estimates computed at step (5)
along a balloon trajectory.120
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2.1 Venus seismicity estimates

The spatial and temporal distribution of venusquakes is estimated from those used in Van Zelst et al.
(2024a), with modifications based on predictions by Gülcher et al. (2025); Cascioli et al. (2025), and
from Sabbeth et al. (2023), hereafter termed Sabbeth et al. (2023). Van Zelst et al. (2024a) assumed
that the tectonic settings on Venus are seismically analogous to a set of specific terrestrial settings.125

The Venusian tectonic settings were classified into four classes: fold belts, rifts, coronae, and intraplate
regions. The spatial distribution of the first three was based on global maps by Price and Suppe
(1995); Price et al. (1996), while intraplate regions were defined as the areas outside these tectonic
regions (Figure 1a). Van Zelst et al. (2024a) assumed these Venus settings to be seismically analogous
to Earth’s continental collision zones (fold belt analogue), continental rifts (rift analogue), subduction130

zones (corona analogue), and intraplate regions. With these Venusian tectonic regimes and Earth
analogues, the number of venusquakes per year can then be estimated by scaling to Venus dimensions
the number of seismic events in the corresponding tectonic settings on Earth. Scaling factors to
account for Venus’ dimensions were built on the basis of the ratio between seismogenic thickness on
Venus and Earth (Van Zelst et al., 2024a). That work considered three global seismicity scenarios:135

Inactive, Low Activity, and High Activity. In the Inactive scenario, the whole planet was assumed
to have a background seismicity analogous to Earth’s continental intraplate setting. In the other
two scenarios, ridges, rifts, and intraplate regions were all considered seismically active, but in Low
Activity, 27.8% of the total corona surface is active, whereas in High Activity, all coronae are active.

Because subduction zones are among Earth’s most seismically active regions and produce the140

highest magnitude seismic events, the assumption linking corona activity to terrestrial subduction
strongly influences Van Zelst et al. (2024a)’s conclusions. Especially the High Activity scenario results
in a number of quakes per year on the same order as on Earth. Coronae are prevalent on Venus’
surface, with 740 features recently cataloged (Gülcher et al., 2025). Their tectonic formation has been
attributed to various lithospheric responses above either buoyant or transient mantle plumes (e.g.,145

Grindrod and Hoogenboom, 2006; Dombard et al., 2007; Gülcher et al., 2020; Schools and Smrekar ,
2024) or above gravitational instabilities and lithospheric downwellings (Hoogenboom and Houseman,
2006; Piskorz et al., 2014). Morphological evidence, analogue experiments, and thermo-mechanical
modeling suggest that short-lived retreating subduction can occur along some coronae arcs (Sandwell
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and Schubert, 1992; Davaille et al., 2017; Gülcher et al., 2020, 2023; Cascioli et al., 2025). However, it150

is unlikely that all coronae on Venus are analogues to active terrestrial subduction zones. To produce
more realistic detectability estimates, we consider only Van Zelst et al. (2024a)’s Inactive and Low
Activity scenarios. Furthermore, we refine the global distribution of coronae that are considered
seismically active based on a recent study of their topographic and gravity signatures (Cascioli et al.,
2025), which proposes active plume-induced crustal recycling scenarios (subduction or lithospheric155

delamination) to occur on 34 coronae today (red features in Figure 1a). This refinement enables more
meaningful spatially-dependent detectability estimates for these features. For simplicity, we keep the
subduction analogue for these shortlisted coronae (see their distribution in red in Figure 1a).

Sabbeth et al. (2023), estimated the total seismic moment release on Venus based on mapped
wrinkle ridges, which are compressive anticlines at the surface caused by blind thrust faults at depth160

(Figure 1b). They determined the total fault length from the global wrinkle ridge map produced by
Bilotti and Suppe (1999). By assuming an average vertical slip extent, three tiers of segmentation,
and a given deformation duration, Sabbeth et al. (2023) calculated the annual seismicity for these
mapped wrinkle ridges. These estimates remain conservative for two reasons. First, the global wrinkle
ridge map by Bilotti and Suppe (1999) maps global trends and overlooks many faults, thereby165

underestimating the total length of all wrinkle ridges on Venus (Bethell et al., 2019). Second, Sabbeth
et al. (2023) considered a 100M year deformation time and only three tiers of segmentation, producing
a seismicity rate multiple orders of magnitude below Earth. This results in detection probabilities
close to zero for a short mission duration at high noise levels. In order to produce more optimistic,
yet realistic estimates, we introduced two modifications relative to Sabbeth et al. (2023)’ work by170

considering a 1M year deformation time and five tiers of segmentation. The resulting seismicity
remains low, within the same order of magnitude as the inactive (intraplate) scenario of Van Zelst
et al. (2024a) (Figure 1c).

2.2 Seismo-acoustic modeling

Body and Rayleigh waves excited by venusquakes can couple to the atmosphere as both Epicentral175

infrasound and Rayleigh-wave infrasound which can propagate to high altitudes (Figure 1d). We
model venusquake-induced infrasound in a given frequency range using an ensemble of possible seismic
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Figure 2. Seismo-acoustic amplitude based on the velocity model Cold100. (a) Simulated SNR timeseries,
high pass filtered with the corner frequency 0.005 Hz for a Mw5 dip-slip venusquake (strike ϕ = 45◦, dip
δ = 45◦, and rake λ = 45◦) produced with a 5 s triangle source time function vs northward distance from
the source for balloon pressure measurements at 60 km altitude (black), dayglow measurements (red), and
nightglow (blue). (b) Median amplitude model for a venusquake of magnitude Mw4 (orange), Mw5 (black),
and Mw6 (green) vs distance, computed for a variety of focal mechanisms, source depths, and strikes, along
with the 0.25 and 0.75 quantiles (shaded regions). (c) Median amplitude model for a venusquake of magnitude
Mw5 at period 100 s (circle), 10 s (triangle), and 1 s (square) vs distance, computed for a variety of focal
mechanisms, source depths, and strikes, along with the 0.25 and 0.75 quantiles (shaded regions).
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models, source location, and focal mechanisms through a three-step procedure: (1) We compute
seismic Green’s functions to determine ground vertical velocity at global scale using the QSSP method
implemented in the Pyrocko Python package (Heimann et al., 2019; Wang et al., 2017); (2) We180

convert ground vertical velocities to ground pressure using a plane-wave assumption; and (3) We
scale the ground pressure to account for the balloon altitude. Resulting waveforms can be bandpass
filtered in a specific range to then extract the peak amplitude vs distance from the epicenter. The
seismic modeling in step (1) allows us to predict the peak amplitude for any 1-D layered seismic
model and any point moment tensor source while accounting for Venus’ sphericity, which is important185

at global scales.

We build 1-D subsurface velocity models based on thermodynamic modeling and assuming
three scenarios for the thermal profile and compositional changes with depth (see Appendix A for
details). Our three scenarios represent plausible lithological end-members (e.g., basaltic crust and
granitoid crust) for cold and hot geotherms inspired by the interior thermal structures of Venus in190

Dumoulin et al. (2017). This model, built with a cold geotherm and 50 km granitoid crust, leads to a
clear crust-mantle boundary, similar to the Preliminary Reference Earth Model (PREM). However,
the two other basalt-harzburgite hot models exhibit a thick low-velocity zone which creates large
shadow zones that reduce the peak velocity amplitudes. By using 1-D layered models, we ignore
mode- and wave-conversion in regions of rapid lateral seismic velocity variations (Brissaud et al.,195

2020) and topographic scattering (Brissaud et al., 2021). Such path effects could occur on Venus
in regions of rapid change in crustal thickness, compositional change, and topography (e.g., James
et al., 2013). However, the best available crustal thickness models still only resolve smooth variations
with dominant wavelength above 100 km, a scale too large to generate significant mode conversion.

The focal mechanism and focal depth are important parameters that control the amplitude200

in the far field. To account for these source- and path-effects and their uncertainties, we simulate
Green’s functions for all combinations of velocity models, at 20 different focal depths between 10 and
50 km, and considering strike-slip and dip-slip mechanisms. Our 50 km focal depth bound corresponds
to the upper estimates of the seismogenic thickness on Venus (Maia et al., 2024). Strike-slip and
reverse-faulting events correspond to end members for peak vertical velocity at the surface, with205

strike-slip producing primarily horizontal motions and reverse, or normal, faults producing vertical
motions. We then estimate the amplitude uncertainty based on the 0.25 and 0.75 quantiles of the
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peak amplitude realizations across all source and velocity model combinations. The amplitudes are
not only focal mechanism dependent, but also frequency dependent, impacting both the source time
function and path effects. Source time functions are intimately related to rupture processes, which210

are hard to define empirically. We therefore consider a Dirac source time function to avoid making
additional assumptions about the physics of the source. To facilitate the detectability analysis across
the full spectrum, we discretize the frequency into three logarithmically distributed bands such that
at 100 s: (0, 0.05) Hz, at 10 s: (0.05, 0.22) Hz, and at 1 s: (0.22, 1) Hz.

We use a straightforward scaling to convert seismic amplitude vz (m/s) into ground pressure215

ps (Pa) in step (2), in the form ps = ρscsvz, where cs (m/s) is the surface acoustic velocity, and
ρs (kg/m3) is the surface atmospheric density. In step (3), we scale the ground pressure amplitude to
obtain the amplitude pb at the balloon altitude using

pb =
√

ρb

ρs
ps, (1)

where ρb (kg/m3) is the atmospheric density at the balloon altitude. Horizontal wind data are extracted220

on June 15, 2025, from the Venus Climate Database (VCD, Lebonnois et al., 2010, 2016, 2022; Martinez
et al., 2023). We use a single density profile extracted at the equator and longitude 0 (SI 1). Although
this scaling assumes a vertically propagating plane wave in a layered atmosphere, it provides an
adequate amplitude approximation at large seismic wavelengths (Macpherson et al., 2023; Gerier
et al., 2024). The impact of horizontal winds on acoustic amplitudes is assumed to be insignificant on225

this nearly-vertical infrasound propagation. Attenuation is typically low below 1 Hz on Venus up
to and Garcia et al. (2024)). However, we consider attenuation for airglow computations at higher
altitudes (see Appendix D). Finally, we ignore geometrical spreading, since seismic waves excite
acoustic waves over large surface areas (Brissaud et al., 2021).

Resulting pressure timeseries are dominated by surface waves at teleseismic distances (black230

line in Figure 2a). In contrast to pressure signals, dayglow and nightglow conversions lead to strong
attenuation at high frequency (red and blue lines in Figure 2a). Note that volume emission rates
peaking at lower altitude for the nightglow than dayglow, leads to earlier apparent arrival times in the
nightglow. The balloon recorded SNR decreases with source distance, but the median SNR remains
above 1 up to 6000 km range for a Mw6 venusquake (Figure 2b). We observe similar amplitudes235

at 1 and 10 s due to the presence of a strong crustal waveguide in the Cold100 model, leading to
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amplification of surface waves above 10 s, while longer periods consistently show lower amplitudes
(Figure 2c). In contrast to Cold100, models built from hot geotherms that exhibit shadow zones lead
to much lower SNR (SI 2). Note that the higher amplitude at short periods can also be explained by
the use of a Dirac source time function to model venusquakes which is not a realistic representation240

of time-dependent rupturing behaviors observed in the far-field (Aki, 1972). Energy spectra of seismic
waves in the far-field can be described using the notion of corner frequency beyond which energy
steeply decreases capturing the impact of fault length and rupture velocity (Brune, 1970). Empirical
relationships between source properties and corner frequency typically lead to much lower amplitudes
at high frequencies and therefore smaller detection probabilities (SI 3). However, to avoid introducing245

a new set of parameters to capture the spectral decay of energy with frequency, we present results
for a Dirac source in the remainder of this paper.

2.3 Venusquake detection probability framework

Determining venusquake detection probabilities bears similarities with building seismic hazard
estimates, where the objective is to compute the probability that at least one earthquake generates250

ground motion exceeding a certain threshold (Cornell, 1968). Similarly, we want to determine the
probability that at least one venusquake generates infrasound signals exceeding a certain Signal-
to-Noise Ratio (SNR). This can therefore be described as a Poisson process assuming that the
distribution of events over a given period of time follows a Poisson distribution in each tectonic
region. We can then determine this detection probability as255

P(TL/σn > d,Mw,min,xobs
lat,lon, t) = 1 − exp[−λ(SNR > d)t] , (2)

where P(SNR > d,Mw,min,xobs
lat,lon, t) is the probability of observing at least one event with a Signal-

to-Noise Ratio SNR > d from a balloon location xobs
lat,lon, for events with magnitude Mw ≥ Mw,min,

with a balloon noise level σn (Pa), and a mission duration t (years), and where λ(SNR > d) is the
rate of venusquakes producing signals with SNR exceeding d. In the rest of the manuscript, we will260

refer to the probability of observing at least one event with SNR exceeding d as the probability of
detecting venusquakes. The rate λ depends on the yearly rate of venusquakes above a magnitude
Mw,min in each tectonic region, expressed as λtec(Mw > Mw,min), as well as on the probability of
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detecting venusquakes from that region from the balloon location P(SNR > d|tec), such that

λ(SNR > d) =
∑
tec

λtec(Mw > Mw,min)P(SNR > d|tec). (3)265

The yearly rate of venusquakes is provided by the seismicity estimates for a given seismicity scenario
(Section 2.1). As for the probability of detecting venusquakes from a given tectonic region P(SNR >

d|tec), it is obtained by integrating the probability of detecting a specific event over the range of
possible magnitudes and distances from the source, which reads

P(SNR > d|tec) =
Mmax∫

Mw=Mw,min

rVenus∫
r=0

P(SNR > d|Mw, r)f tec
M (Mw)f tec

R (r)drdMw, (4)270

where P(SNR > d|Mw, r) is the probability of detecting venusquakes of a given magnitude Mw and
from a distance r (km), rVenus is the antipodal distance on Venus, i.e., maximum distance between
two locations on Venus, f tec

M (Mw) is the Probability Density Function (PDF) of an event with a
specific magnitude Mw occurring in the tectonic region tec, and f tec

R (r) is the PDF of an event
occurring in the tectonic region tec at a distance r from the sensor location. These two PDFs read275

f tec
R (r,x) = P(R < r) = ∂

∂r

S(r,x) ∩ Stec

Stec
, (5)

S(r,x) = {P ∈ Venus : dist(P,x) ≤ r} , (6)

f tec
M (Mw) = P(Mw ≥ M ≥ Mw,min) = − ∂

∂Mw

λtec(Mw ≥ M ≥ Mw,min)
λtec(M ≥ Mw,min) , (7)

where Stec is the surface area of tectonic region tec and S(r,x) is the projected circular surface area
from balloon location x up to a distance r. Finally, the probability of detecting a specific venusquake280

P(SNR > d|Mw, r) used in equation 4 corresponds to the probability of a venusquake to produce a
signal with SNR > d integrated over all possible SNR values above d such that

P(SNR > d|Mw, r) =
∞∫

SNR=d

fTL(SNR = d,Mw, r)dSNR, (8)
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where fTL(SNR = d,Mw, r) is the PDF of a specific venusquake to generate a signal with SNR = d

where TL stands for Transmission Loss, i.e., the amplitude variations with distance, such that285

f tec
TL(SNR,Mw, r) =


G

(
TL(Mw, r)

σn
,σTL,0.25

)
, if TL(Mw, r)

σn
≤ SNR,

G
(

TL(Mw, r)
σn

,σTL,0.75

)
, if TL(Mw, r)

σn
> SNR,

(9)

where TL(Mw, r), in Pa, is the maximum synthetic amplitude prediction for an event of magnitude
Mw at a distance r from the source. The parameters σTL,0.25 and σTL,0.75, in Pa, are the predicted
uncertainties, also called theory error, computed as the 0.25 and 0.75 quantiles of peak synthetic
amplitudes for a range of focal depths and crustal thicknesses (Section 2.2), and G(µ,σ) is the Gaussian290

distribution of mean µ and standard deviation σ. The noise level σn is still unconstrained for Venus
conditions. We assume σn to be constant with frequency and on the same order of magnitude as the
balloon noise recorded on Earth, which is ∼10−2 Pa (Garcia et al., 2024). Yet, we do not need to
recompute our detection probabilities for a different noise level since the probabilities are given in
terms of SNR, i.e., a higher noise level simply corresponds to a lower SNR.295

Several additional aspects need to be included to reflect the complexity and multi-instrument
capabilities of future geophysical missions. Firstly, balloon sensors will be moving along Venusian
winds. To include this effect, we simulate a trajectory from an initial drop off location, by considering
a free floating balloon moving with horizontal winds at constant altitude. Detection probabilities
computed at each location on Venus can then be integrated along the balloon trajectory to compute300

the final detection probability at the end of the mission (see Appendix B). Additionally, successful
subsurface inversions require an accurate localization of seismic events, which can be achieved by
combining observations from multiple locations. Therefore, assessing the detection of the same event
across a balloon network is key. The balloon network detectability is estimated by varying the surface
area S(r,x) in equation 7 and by considering the source-balloon distances as the maximum distance305

between sources across all balloons in the network (see Appendix C). Finally, airglow imagers will
provide complementary acoustic wave observations, especially for large-magnitude events (Garcia
et al., 2024). We incorporate airglow-based SNR estimates into the detectability framework by
including the airglow imager detection surface in the surface area S(r,x), to account for both the
expected SNR in airglow data and the large field-of-view of airglow imagers (see Appendix D).310
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Figure 3. Tectonic event detection probability for a specific balloon flight analyzed at period 1 s for velocity
model Cold100. (a) Balloon flight trajectories in longitude (black) or latitude (red) vs time. (b) Wind direction
at 50 km altitude on Venus. The points show the balloon trajectory, color-coded by time. (c) Detection
probability SNR = 1,2,5 vs time (orange, red, purple lines) and time derivative of the detection probability
for SNR = 1 (blue line). (d) Hourly detection probability for SNR = 1. The points show the balloon trajectory
color-coded by time. The maps in (b,d) are in Robinson projection, centered at 0◦ longitude.

3 Tectonic event detectability

To illustrate both our trajectory and detection probability estimates, we first consider the detectability
of events produced by the tectonic seismicity model, built from Earth catalogue scaling, from a single
balloon being dropped off at an arbitrary location (0◦E, 45◦S). Trajectories for balloons flying at 50
km altitude are mostly westward (Figure 3a,b), which follows from the direction of the strong zonal315

winds in Venus’ upper atmosphere. Interestingly, there is a small meridional wind component that
causes the balloon to drift from high latitudes towards the equator (see SI 1). Similarly, balloons
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can get trapped in polar regions if dropped off within 5 degrees latitude from the poles, due to the
strong polar vortex on Venus. Figure 3c shows detection probabilities that steadily increase with
flight time to reach about 40% for SNR = 1 after 6 months. We observe peaks in the time derivative320

of the detection probability (blue line in Figure3c) corresponding to a sudden increase in detection
likelihood as the balloon flies above the most active coronae (Figure 3a,d).

Because meridional wind components are mostly symmetrical around the equator, balloons
consistently drift towards the equator for any drop-off latitude outside of polar regions (SI 4). However,
in polar regions, balloons get trapped in the core of the zonal wind vortex. Yet, no matter the drop-325

off location and when considering long-duration flights, spatial heterogeneities in seismic activity
(Figure 1c) do not significantly affect the final detection probability compared to a homogeneous
global seismicity (SI 4). We obtain similar results at a period of 10 s, but the final detection probability
drops at a period of 100 s due to lower amplitudes at low frequencies (SI 5). The presence of a strong
crustal waveguide seems key to producing strong ground motions and detectable signals, as velocity330

models built from hotter thermal profiles lead to lower final detection probabilities (SI 6). Beyond
tectonic seismicity, the lower moment rates for wrinkle ridges lead to significantly lower detection
probabilities, at less than 10%, after a 6-month mission at 1 s (SI 7). Results are presented for the
detection of at least one event, but the detection of several events could ensure more robustness in the
inverted subsurface and source models. However, hourly detection probabilities lower than 50% for at335

least one event would drastically decrease for the detection of at least two events or more (SI 8).

Robust probability estimates should not be dependent on a specific balloon trajectory since
drop-off locations are not constrained yet. We therefore simulated 6-month flights at three altitudes
50, 55, 60, and 65 km altitude, and from 750 different drop-off locations defined along a grid from
latitudes 65◦S to 65◦N that excludes the polar latitudes. We then extracted median probabilities as340

well as quantiles 0.25 and 0.75 from this set of simulations. We computed statistics for three networks:
(1) a single balloon, (2) a 3-balloon network dropped-off along the same latitude line with a maximum
distance of 5000 km, and (3) a nightglow or dayglow imager. Due to the ground velocity increase with
frequency, we observe a significantly higher final detectability level after 6 months (Figure 4a,b,c)
at 1 s and 10 s (75%) than at 100 s (45%). We also observe up to 10% variability in detectability345

between the 0.25 and 0.75 quantiles, mainly due to different balloon flight altitudes and decreasing
pressure with altitude. At 1 s, detection probabilities of the same event across the entire network
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Figure 4. Tectonic event detection probability for balloon and airglow imager networks. Median detection
probabilities (solid lines) along with the uncertainty (shaded regions), computed from the quantiles 0.25 to
0.75, for wave periods (a,d,g) 100 s, (b,e,h) 10 s, and (c,f,i) 1 s. For velocity model Cold100, (a,b,c) Detection
probability vs mission duration for SNR = 1 and (d,e,f) Detection probability vs SNR over a 6-month long
mission duration for a single balloon (1 balloon, blue circle) and for a 3-balloon network (any event and
same event) averaged over all drop-off locations. The estimated balloon network detection probabilities are
shown for the detection of a single event at all balloons across the network (same event, green circle) and for
the detection of any event by at least one balloon in the network (any event, red circle). (g,h,i) Detection
probability vs SNR over a 6-month mission for a balloon network for the velocity model Cold100 (black),
Hot10 (orange), Hot25 (pink), and Hot40 (blue). (j,k,l) Detection probability vs SNR over a 6-month mission
for velocity model Cold100 for an airglow imager probing the dayglow (purple triangle), nightglow (green
circle), and a network of balloons (black crosses).
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show a ∼ 30% decrease (Figure 4c) compared to a single-balloon detection across a balloon network.
The variability in detectability between network configurations decreases below ∼ 20% for lower
frequencies (Figure 4a,b). This behavior is likely due to the increased attenuation of high-frequency350

seismic motion, preventing its propagation at global scales. Detection probabilities decrease by about
25 − 35% between SNR = 1 and SNR = 5 for all periods (Figure 4d,e,f). High SNR thresholds are
generally reached for high-magnitude events which produce high-amplitude surface waves that travel
globally. On the other hand, detecting any event from a network slightly increases the detection
probability for low SNR thresholds. For longer periods, at 100 s, where predicted amplitudes are355

lower, both network and single balloon detection probabilities converge to lower values due to the
absence of detectable signals at a global scale.

Detection probabilities are also highly dependent on the seismic velocity model as suggested
by hourly detection probability maps (SI 6). Detectability levels for a 3-balloon network decrease
significantly when using models built from hot geotherms by about 10 to 20% (Figure 4g,h,i). The360

presence of a strong crust-mantle interface in model Cold100 explains the larger final probabilities.
Model Hot40 despite not exhibiting a large low-velocity zone in the upper mantle still produce
detection probabilities on the same order as the other models built from hot geotherms. Airglow
imagers typically yield a much higher detection probability than balloon networks: we estimate close
to 100% at 100 s in the dayglow layer (Figure 4j,k,l). These high airglow detection probabilities are365

primarily driven by the large Field Of View (FOV) which is equivalent to a dense network of sensors.
In contrast to balloon detectability, the low passing effects of the integration of volume emission rate
perturbations in the airglow layer, lead to significant attenuation at 1 s. The thicker dayglow layer
reduces the SNR even further at high frequency, compared to the nightglow layer (Figure 4l). Note
that our results do not account for post-processing steps of airglow images that might increase the370

SNR, such as pixel and time binning (Didion et al., 2018). We showed raw-image detections, but
binning N pixels would increase the SNR by a factor N would also decrease the spatial resolution
of each observation (Kenda, 2018). Comparing Figure 4d,e,f to Figure 4j,k,l, for low-SNR signals,
the detectability of a single seismic event across both balloon and airglow sensors will therefore be
mostly restricted by the detectability at the balloon sensors.375
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Figure 5. Volcanic sequence detection probability at 1 s for velocity model Cold100. (a) Seismic events
extracted from the Hawaiian Volcano Observatory catalog in Hawai‘i. (b) Seismic events from May to August
2018 showing the largest tectonic earthquake (Slumping), Pu‘u ‘O‘o crater collapses, and Kilauea collapse
events. (c) Simulated average number of detected events on Venus vs drop-off time and SNR across all drop-off
locations. (d) Probability Density Function (blue histogram) and corresponding probability of observing a
signal on Venus above a given SNR across the entire flight dataset (P (> SNR), red).

4 Volcanic sequence detectability

In addition to major tectonic structures, Venus’ surface is largely dominated by volcanic features (e.g.,
Ghail et al., 2024), with at least tens of thousands of volcanoes, flows, and edifices identified across
the planet Hahn and Byrne (2023); Bickel et al. (2025). Given that major terrestrial volcanoes are
seismically active (Phillipson et al., 2013), similar activity may also occur on Venus. The detection380

of volcanic seismicity on Venus would bring a better understanding of the driving processes behind
the planet’s volcanic activity, and provide additional constraints on its subsurface. Yet, the seismic
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potential of Venus volcanoes has been unexplored in previous work. Indeed, scaling Earth volcanism
to Venus is a challenging task. Although some studies, such as Byrne and Krishnamoorthy (2022),
have proposed a scaling of volcanic eruptions in terms of Volcanic Explosive Index (VEI), identifying385

the seismic contribution to the VEI requires several assumptions about volcanic source processes.
Instead of introducing a large number of new scaling parameters to model volcanic seismicity, we opt
to use seismic catalogs around well-instrumented Earth volcanoes as proxies for Venus volcanism.

There are several volcanoes on Venus with size and gravity signatures similar to hot-spot
volcanoes on Hawai‘i (Herrick and Hensley, 2023). In particular, Herrick and Hensley (2023) have390

confirmed the recent deformation of a volcanic vent related to the Maat Mons volcano in Alta Regio
on Venus with dimensions of the same order of magnitude as the caldera collapse at Kilauea volcano,
Hawai‘i during the 2018 Kilauea eruption (Neal et al., 2019). The authors have also speculated
that some of the radar data near the event show a lava flow with, once again, similar dimensions
to the Kilauea Puna eruption in Hawai‘i. Moreover, gentle slopes in Hawai‘i shield volcanoes show395

similarities with Venus volcanoes such as Idunn Mons (D’Incecco et al., 2024). We therefore selected
Mauna Loa and Kilauea calderas and their rift zones in Hawai‘i as representative of typical seismicity
in volcanic regions on Venus. This allows us to investigate variations of detectability not only in
space but also in time for complex seismo-volcanic sequences, comprising explosive events, collapses,
and deeper brittle failure events.400

We extracted all seismic events above magnitude 3 in Hawai‘i from the Hawaiian Volcano
Observatory catalog (Figure 5a) since 1983 – the onset of the Pu‘u ‘O‘o eruption. Several driving
processes can explain the variability in seismicity since 2012 (Figure 5a,b):

– (2012–2018) low-level eruptive activity from long-lived Pu‘u ‘O‘o eruption with infrequent
surficial activity and slow-moving, small lava fronts;405

– (May 1 – August 4 2018): Pu‘u ‘O‘o crater floor collapse, causing a series of 62 Mw > 5
earthquakes at the summit;

– (May 4, 2018) Mw 6.9 earthquake, below Kilauea’s south flank, caused by slumping of the
volcanic pile;

– (November 27 – December 13 2022) First eruption at Mauna Loa following 38 years of quiescence;410
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– (2018–2024) Magma influx and small eruptions at Kilauea characterized by intermittent swarms
of seismicity.

This dataset is particularly interesting as it includes a variety of source mechanisms such as collapse
events and small lava flows, as have been observed on Venus. Here, we select the largest volcanic
edifice on Venus, Maat Mons (8.7◦N, 52.5◦W), and assume that it produces the same seismicity as415

observed in Hawai‘i. To provide meaningful detectability estimates, we simulate 14800 flights with
drop off times every 6 months from 1983 to 2023 within 50 degrees latitude and 50 degrees longitude
from the volcano location.

Considering that Maat Mons follows the same volcanic sequence as Hawai‘i, the highest peak in
number of events detected by the balloons, with a SNR above 2 would occur in 2018 when slumping420

happens, producing a Mw 6.9 earthquake, together with repeating collapse events around Mw 5
(Figure 5c). However, the average number of events detected across all drop-off locations remains
below 1 across most years even for low SNR (Figure 5c). Only swarms of seismic activity with
magnitudes above 4 can yield an average number of detections close to 1 (e.g., around 1996 and 2007).
The probability of observing a signal with SNR > 1, integrated across all drop-off times, is around 8%425

for SNR > 1 and decreases to 2 − 3% for SNR > 3 (Figure 5d). For SNR > 1, detection probabilities
of volcanic seismicity from a single volcano P(V ) ≈ 8% will therefore contribute with the tectonic
event detection probability P(Q) ≈ 65% (Figure 4c) to the overall detection probability P(Q ∪ V )
such that P(Q ∪ V ) = 1 − [1 −P(Q)][1 −P(V )] ≈ 3% While this suggests a fairly minimal seismic
contribution from volcanic seismicity to the detectability, we point out that volcanic events could430

occur around other volcanoes (Byrne and Krishnamoorthy, 2022) simultaneously. Once again, these
balloon detection probabilities can be extrapolated to airglow measurements and other periods using
the results described in Section 3. At 100 s, we observe a significant drop in detection probabilities
with maximum probabilities around 2% for SNR > 1 (SI 9). On the other hand, the large FOV of
dayglow measurements could lead to a increase in detection probabilities of about 25% at 1 s and435

more than 50% at larger periods (when comparing 1 balloon probabilities in Figure 4d,e,f and dayglow
in Figure 4j,k,l).
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5 Discussions and Limitations

Our results qualitatively agree with Garcia et al. (2024) in terms of detectability levels for long-
duration missions. Garcia et al. (2024) predicted a detection of at least one seismic event above Mw 5440

(with a 66% confidence level) from a balloon and for a 3-months long missions if 200 homogeneously
distributed events occurred per year. Here, at 1 s, we reach the 66% confidence level for a 3- to
3.5-months long missions long mission as well (Figure 4c). This good agreement is explained by our
tectonic event catalog, producing about 150 events per year (Figure 1c), i.e., on the same order as
the minimum number of events predicted by Garcia et al. (2024). Our airglow detectability model445

produces probabilities larger than 66% for periods lower than 100 s for both dayglow and airglow
implying that events could still be detected for a lower seismicity scenario. This is qualitatively
consistent with the much smaller number of Mw 5 seismic events (about 6 in the nightglow and 4
in the dayglow) required for a detection in Garcia et al. (2024) compared to the number of events
included in our catalog. However, our seismic amplitude prediction model differs strongly at low450

frequencies compared to Garcia et al. (2024). This is mainly due to the use of Dirac sources in the
current study and limitations of the empirical model used by Garcia et al. (2024). On one hand, Dirac
source time functions do not capture the true magnitude-corner frequency relationship observed for
earthquakes (Brune, 1970). On the other hand, the magnitude-period-amplitude relationship used by
Garcia et al. (2024) was initially designed for surface waves around 18 − 22 s period, and is therefore455

not valid outside of this range.

The detection probability at given drop-off locations would increase under more active seismicity
scenarios, such as global venusquake rates on the order of terrestrial earthquakes (SI 10). However,
such high rates are unlikely due to the absence of plate tectonics and global subduction networks
(Ghail et al., 2024). Assuming all coronae to be active with subduction-like seismicity (as in Van Zelst460

et al., 2024a) likewise contradicts previous analyses of the diverse corona morphologies (Gülcher et al.,
2025). On the other hand, lower seismicity levels, as proposed through Sabbeth et al. (2023)’ wrinkle
ridge model, result in small detection probabilities events even at low SNR (SI 7). This highlights the
need for further constraints on Venus seismicity through geodynamic simulations along with noise
modeling (e.g., Gülcher et al., 2023). It should be noted that the wrinkle ridge seismicity estimates by465

Sabbeth et al. (2023) are likely conservative due to the use of a global map (Bilotti and Suppe, 1999),
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which does not resolve individual faults in detail. The tectonic scenarios considered here also exclude
tesserae and other highly fractured terrains as seismically distinct from terrestrial intraplate settings.

In our probabilistic framework we also assumed that occurrence of tectonic venusquakes can
be described by a Poisson process. This is typically not the case when extracting events from global470

catalogs, like in Van Zelst et al. (2024a), primarily due to time-dependent foreshock and aftershock
sequences. Declustering techniques are generally applied on a local scale to identify aftershocks or
foreshocks (Gardner and Knopoff , 1974) with, more recently, machine learning providing more generic
approaches to a variety of earthquake catalogs (Aden-Antoniów et al., 2022). However, applying
such tools at a global scale is still challenging and will not correctly identify main shocks. Yet,475

as aftershocks typically decay quickly in magnitude with time, we can expect that the number of
lower-magnitude venusquakes < Mw5 will decrease which won’t significantly alter the detectability
results presented here.

Seismicity is closely related to subsurface velocity structures. Our thermodynamical results
indicate that in cases of high subsurface temperature profiles, large low-velocity zones are created,480

leading to smaller surface seismic motions and consequently reduced detection probabilities (Fig-
ure 4g,h,i). Large uncertainties in the subsurface models therefore become a challenge if the goal is to
provide robust detection probability estimates. In particular, seismic attenuation is a key parameter
that is difficult to constrain and future studies should revisit our mapping of AK135 quality factors
to our Venus subsurface models. Beyond tectonic seismicity, global volcanic seismicity could enhance485

detection probabilities, despite small final detection probabilities for a single volcano, if high seismic
activity occurs at multiple volcanoes, which can be expected considering the abundance of volcanoes
on Venus’ surface (Hahn and Byrne, 2023; Bickel et al., 2025).

In addition to seismicity uncertainties, we made strong modeling assumptions to simplify the
construction of our detection probability framework, which deserve further discussion to assess the490

robustness of our estimates: (1) A laterally homogeneous 1-D seismic model accurately represents
Venus’ interior, (2) The range of realistic Venus seismic velocities and attenuation parameters are
known, (3) Venus’ surface has no topography, (4) background VER models are time- and space-
independent, (5) The deep atmosphere of Venus can be treated as an ideal gas, and (6) Horizontal
winds are not time dependent. All six assumptions will have an impact on the predicted body and495
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surface-wave amplitudes recorded from a balloon or airglow imager. Lateral variations in seismic
velocity lead to amplification and de-amplification of certain frequencies as well as phase and surface
wave mode conversions (Brissaud et al., 2020). In particular, high crust-mantle impedance contrasts
can promote the trapping of energy close to the surface. Additionally, strong scattering occurs as
surface waves travel across topography, especially when the dominant wavelength of the topography500

is of the same order as the dominant wavelength of the surface wave. Beyond seismic velocity models,
background VER are considered homogeneous both in space and time which is not valid (Didion
et al., 2018). VER amplitudes are expected to decrease away from the location of peak VER which
would affect the conversion of acoustic waves into the airglow layer.

Furthermore, it is known that the CO2 composing the deep atmosphere of Venus behaves more505

like a critical fluid than an ideal gas at its extreme temperature and pressure conditions. Averbuch
and Petculescu (2025) showed that small variations in the sound velocity (about 5%) can be expected
if applying a more general equation of state. Although this would not lead to significant changes in
seismic-to-acoustic energy transmission, the authors also highlighted that at pressure and temperature
closer to the critical point of CO2, sound velocity could reach values close to zero, which would510

dramatically affect wave propagation within the first 10 km of Venus atmosphere. We should also
mention that we did not consider direct infrasound from volcanic eruptions, which could be detected
when a balloon is close to an active volcano. However, due to the lack of a strong waveguide in
the Venus atmosphere (Averbuch et al., 2023), direct infrasound detection would be limited to the
vicinity of each volcanic source. Beyond wave modeling assumptions, we extracted wind profiles on515

June 15, 2025, to simulate balloon trajectories. However, the wind patterns fluctuate between local
day and night, and building more realistic balloon trajectory models with 3-D wind models can
be important to better understand the trajectories and the associated noise levels. Note that we
considered period-independent noise levels which is not valid in practice as environmental sources,
wind noise and vortex shedding (Krishnamoorthy et al., 2020), balloon resonances (Garcia et al.,520

2022), balloon scattering (Godin, 2024) will affect recordings in various frequency bands. SNR for
the same input amplitude will therefore change with frequency. In particular, in polar regions near
the eye of the polar vortex, we can expect much more instable wind patterns that would deteriorate
SNRs despite our detection probability estimates converging to the same values for any balloon
drop-off locations (SI 4).525

– 24 –



Manuscript submitted to Earth and Space Science

6 Conclusions and Implication for future missions to Venus

Future joint balloon-airglow missions to Venus could provide an unprecedented level of detail on the
subsurface. Our estimates for a 6-month mission suggest that detection probabilities peak at 10 s from
∼ 75% for a single balloon, up to ∼ 65% for the detection of the same event by a balloon network,
and over ∼ 90% for a detection by an airglow imager. We observe only minimal variations in the final530

detection probability over a 6-month mission when comparing the heterogeneous and homogeneous
spatial distribution of venusquakes despite the hourly detection levels varying to 50% between the
intraplate regions and the selected coronae (in Figure 1a). Therefore, the drop-off location of a
balloon on Venus, provided that it is outside of the polar caps, has no significant impact on the final
detection probability at the end of the mission. When considering other subsurface models built535

from hotter thermal profiles (see Appendix A), we observe much lower detection probabilities due to
the absence of strong crustal waveguide (SI 6). Wrinkle Ridges seismicity releases significantly less
energy in the atmosphere with about 4 to 5 times lower probabilities than for tectonic seismicity.
Our estimates indicate that each swarm of volcanically-induced seismicity with magnitude above 4
(triggered by edifice collapse, slumping, or eruptions) could contribute an increase up to 3% in global540

seismicity for a single balloon mission. Note that our results are presented for venusquakes modeled
with Dirac source time functions, for which we expect higher amplitude, and therefore larger final
probability, at 1 s (e.g., 65% for a single balloon) compared to 100 s (e.g., 40% for a single balloon),
after 6 months of flight.

The ultimate goal of future missions is the identification of body wave and/or surface wave545

arrivals to retrieve seismic velocities and/or seismic source properties. This requires the observation
of the same event across at least three stations to allow for the accurate inversion of both source
location and origin time along with subsurface velocities. Additionally, high-SNR signals are needed
to obtain low uncertainties on arrival times or waveform shapes for body waves and surface waves in
various frequency bands. Assuming that signals with SNR = 2 would be enough to produce reasonable550

posterior distributions of seismic velocities, our results show a median detection probability after 6
months of 37% at 1 s for a 3-balloon network (Figure 4f) which is too low to ensure mission success.
Note that we only considered a distribution of balloons along the same latitude line with a maximum
distance of 5000 km and the impact of network geometry should be further investigated. Increasing
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the mission duration would steadily improve the detectability of high-SNR signals. Detectability vs555

mission duration follows a smooth second-order functional in each frequency band, allowing us to
extrapolate that a 8 to 10 month mission would lead to the reference 66% confidence level used in
Garcia et al. (2024).

Note that our work did not account for signal post-processing methods, which could be another
way to increase the SNR. If each balloon can be equipped with several sensors along a tether (e.g.,560

Brissaud et al., 2021), beamforming techniques could also be applied to reduce incoherent noise. In
contrast to balloon network detections, airglow detections consistently show detection probabilities
above 66% for SNR = 2 except in the nightglow at 100 s. Moreover, pixel and time binning could
significantly increase the detectability by removing incoherent noise. However, the integration of
volume emission rate perturbations within each airglow layer both reduces the amplitude and affects565

the phase. In particular, at high frequencies, accounting for acoustic-to-airglow transfer during the
inversion of seismic dispersion from airglow data, could lead to large uncertainties in posterior
distributions (Kenda, 2018), while balloon pressure data are not affected and produce a more direct
mapping to seismic dispersion. Beyond subsurface velocity inversions, the event magnitude could
be derived from the peak pressure amplitude and the source location, as peak pressure is directly570

related to peak ground velocity (Macpherson et al., 2023). However, determining the moment rate
and b-value on Venus will be challenging from a pure balloon network due to the need to detect
a large number of events. For example, on Mars the moment rate estimated using 55 events still
showed large uncertainties with values from 1015 to 1018 Nm/year (Knapmeyer et al., 2023).

Our work further highlighted the potential of airglow missions to Venus, as well as joint575

balloon-airglow missions over 6 months to 1 year of observation for the detection of atmospheric
signals to be used for retrieving subsurface velocities. In particular, joint detections across balloon
networks and an airglow imager would allow to both capture accurately high and low frequencies
to retrieve crustal and mantle properties. The current work also showed the importance of building
realistic noise models in the Venus atmosphere since detection probabilities estimates vary by 50%580

when going from SNR = 1 to SNR = 5). Better constraining the seismic velocity prior models is also
key, as it will strongly impact the seismic-to-acoustic energy coupling (SI 6). Future studies should
investigate 3 main research topics: 1) assessing the impact of several modeling assumptions on wave
amplitudes, 2) validating the inversion of subsurface velocities from balloon pressure data to assess
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the resulting uncertainties in terms of seismic velocities, and 3) better constraining the range of585

possible seismic subsurface models through thermodynamical simulations. This would allow us to
further constrain the requirements in terms of SNR, and to refine the mission and instrument design
requirements.
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Appendix A: Subsurface velocity models

As Venus’ present-day interior thermal and lithological structure remains poorly constrained (e.g.,
James et al., 2013; Dumoulin et al., 2017), we consider several 1-D layered models of Venus’ upper
300 km elastic structure that represent plausible lithological end-members. These profiles are generated
by extrapolating Earth’s shallow lithological layers to conditions envisioned for Venus’ thermal and830

compositional state (Figure A1a,b). The thermal profiles considered correspond to the upper 300 km
of two end-member geotherms for Venus’ interior, labeled M1 to M3 and corresponding to “hot” and
“cold” scenarios, based on Dumoulin et al. (2017) and originally derived from Steinberger et al. (2010)
and Armann and Tackley (2012) (Figure A1c). These profiles differ in mantle potential temperature
(1600 K vs. 1900 K) and adiabatic gradient (0.3 K/km vs. 0.5 K/km). The resulting 1-D background835

seismic models used to compute the Green’s functions in step (1) are shown in Figure A1d,e,f.

To refine the uppermost lithospheric thermal structure, we employ a half-space cooling model
(Turcotte and Schubert, 2002), commonly used in geodynamic modeling (e.g., Gülcher et al., 2020).
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This model incorporates the relevant potential temperatures and adiabatic gradients along with
different lithospheric ages: 10 and 25 Myr for the two “hot” profiles, and 100 Myr for the “cold” profile.840

These thermal profiles are combined with several 1-D internal layering profiles (Figure A1a). This
layering is based on an underlying mineralogical model with depth-dependent mineral fractions that
include ferric iron, computed using a two-step approach. First, we assume four distinct lithological
end-members that could plausibly exist within Venus’ crust-mantle system: granitoid crust, basaltic
crust, harzburgite-depleted mantle lithosphere, and the primitive mantle. The detailed chemical845

compositions of these end-members are shown in Figure A1b. We adopt basalt and harzburgite models
from Stixrude and Lithgow-Bertelloni (2024a), a granitoid model representative of Archean-type
continental crust from Martin (1994), and a primitive mantle composition estimated from solar
nebula fractionation processes (Morgan and Anders, 1980; Dumoulin et al., 2017). We consider four
thermomechanical structures in this study, see Figure A1c,d,e,f.850

Our hottest and thinnest lithosphere end-member, M1-Hot10, features a thin basaltic crust
over a harzburgite-depleted mantle lithosphere and primitive mantle, combined with the hottest
geotherm. This configuration is representative of Venusian regions with lithospheric and crustal
thinning, such as rift zones and some coronae (e.g., Sabbeth et al., 2023). The second structure,
M2-Hot25, includes a slightly thicker basaltic crust (10 km) over a more substantial harzburgite-855

depleted lithosphere, underlain by the primitive mantle, combined with a hot but somewhat cooler
lithosphere—representative of volcanic plains regions (e.g., James et al., 2013). The chemical boundary
between the harzburgite lithosphere and the underlying primitive mantle may be blurred because
of the effects of graded melting (e.g., Kelemen et al., 1992) and small scale convection in the
asthenosphere (e.g., Ballmer et al., 2007). To account for this, we proposed an additional end-member860

M2-Hot40, derived from M2-Hot25, in which the harzburgite is thoroughly mixed with the primitive
mantle. As an opposing end-member to basaltic crust models, we consider a thick granitoid crust
over a cold lithosphere (M3-Cold100), as suggested for crustal plateau regions (e.g., Poldervaart,
1955; Hans Wedepohl, 1995). The density and elastic properties of these models are calculated
using the temperature and pressure conditions derived from the chosen geotherms (Figure A1c).865

For each lithological composition and its corresponding pressure-temperature path, we use the
thermodynamic software HeFESTo (Stixrude and Lithgow-Bertelloni, 2005; Workman and Hart, 2005;
Stixrude and Lithgow-Bertelloni, 2011, 2024a) to compute elastic properties. Unlike many previous
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models that only consider ferrous iron, our model incorporates ferric iron. HeFESTo determines the
phase equilibrium of a specified set of candidate mineral species by minimizing the Gibbs free energy.870

Based on this equilibrium and a consistent thermodynamic framework, it calculates the corresponding
thermodynamic quantities of the assemblage at the specified conditions. In this study, we use the
default ambient-condition mantle species dataset provided with HeFESTo.

Appendix B: Accounting for balloon trajectories

To account for the motion of our observation point, i.e., the balloon motion, we compute flight875

trajectories xlat0,lon0,tmax up to a flight time tmax by considering a free floating balloon at a constant
altitude zb freely moving with Venus’ horizontal winds, such that

xobs
t = xobs

t−∆t + vwind(xobs
t−∆t)∆t (B1)

xobs
0 = xlat0,lon0 ,

where xobs
t is the balloon location at time t, ∆t in s is the time step, vwind(xobs) is the horizontal880

wind vector at location xobs, and xlat0,lon0 is the origin location of the balloon. We can then compute
the detection probability for a given balloon flight P(SNR > d,Mw,min,xlat0,lon0 , tmax,σn), up to a
time tmax and from an origin location xlat0,lon0 , by determining the probability of not detecting any
event at each location along the balloon trajectory t such that,

P(SNR > d,Mw,min,xlat0,lon0 , tmax,σn) = 1 −
N= tmax

∆t∏
i=0

[
1 −P(SNR > d,Mw,min,xobs

i∆t,σn,∆t)
]
, (B2)885

where P(SNR > d,Mw,min,xobs
t ,σn,∆t) is given by equation (2) and ∆t (years) is the time step.

Appendix C: Incorporating a balloon network

We have so far described the detection probability for a single balloon, but future missions will need
to deploy several balloons to (1) maximize the detection likelihood of venusquakes and (2) accurately
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Figure A1. Construction of thermodynamically stable seismic velocity models. (a) 1-D layered thermochemical
models M1 to M3, formulated by layered lithology and geotherms. We consider at most 3 layers representing
crust, mantle lithosphere, and sub-lithosphere mantle. (b) Lithological end-member compositions in molar
percentages. Basalt, harzburgite, are from Stixrude and Lithgow-Bertelloni (2024b), after Workman and Hart
(2005) and Frost and McCammon (2008), and granitoid is modified from (Martin, 1994). Primitive mantle
composition is modified from Dumoulin et al. (2017). (cdef) 1-D layered thermochemical models: M1 to M3,
and their: (c) geotherm; (d) density; (e) P-wave velocity; (f) S-wave velocity. Elastic properties derived from
Earth’s global reference models, PREM (Dziewonski and Anderson, 1981) and ak135 (Kennett et al., 1995),
are shown in (cdef). A regional shear wave model TNA for western North America (Grand and Helmberger ,
1984), is also included for comparison.
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retrieve their location and timing. To ensure the detection, i.e., observation of a signal above an SNR890

threshold, of the same event across the entire network, the amplitude of the signal at the balloon
furthest from the source needs to be larger than the SNR threshold. Therefore, to determine the
detection likelihood we can simply replace the station-to-venusquake distance r in equation (4) by
the maximum distance between a venusquake and all balloons such that

P(SNR > d,xb|tec) =
Mmax∫

Mw=Mw,min

rVenus∫
r=0

P(SNR > d|Mw, r)f tec
M (Mw)f tec

R,network(r,xb)drdMw, (C1)895

where (xb
n)n=1,Nballoons

are the coordinates of each of the Nballoons balloons, and f tec
R,network(r,xb) is

the PDF of an event occurring in the tectonic region tec at a distance r from the furthest sensor
location defined by

f tec
R,network(r,xb) = P(R < r) = ∂

∂r

Snetwork(r,xb) ∩ Stec

Stec
, (C2)

Snetwork(r) =
{

P ∈ Venus : max
(
dist(P,xb

1),dist(P,xb
2), . . . ,dist(P,xb

N )
)

≤ r
}

. (C3)900

While the detection of the same event across the entire network is valuable for inversion
purposes, determining the detection probability of any events with a network would give us insights
on the advantages of deploying a network vs a single sensor to improve venusquake sensitivity. The
detection of any events can be simply computed by replacing the maximum operator in equation
(C3) by a minimum operator such that905

Sany event
network (r) =

{
P ∈ Venus : min

(
dist(P,xb

1),dist(P,xb
2), . . . ,dist(P,xb

N )
)

≤ r
}

. (C4)

Appendix D: Incorporating airglow measurements

Airglow imagers onboard orbiters could provide a unique or complementary set of measurements
together with a balloon network. Synthetic modeling shows that the perturbation of airglow emission
by large earthquakes could be detectable on Earth (Inchin et al., 2020) and previous mission concepts910

have highlighted the potential for seismic-induced variations of the 1.27 µm nightglow and the 4.28 µm
dayglow on Venus (Didion et al., 2018; Sutin et al., 2018). Garcia et al. (2024) provided airglow
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detectability estimates but made several assumptions about the underlying physics: (1) amplitudes
can be determined from an empirical magnitude-to-amplitude equation, (2) the frequency dependence
of the acoustic to airglow coupling can be neglected despite having a strong influence on integrated915

airglow signals (Kenda, 2018, Section 4.3), (3) shot noise in photon inputs was ignored while it
heavily corrupts airglow images especially at 1.27 µm (Kenda, 2018, Section 4.4), and (4) spatial and
temporal pixel binning was not considered despite being key to greatly enhance SNR. Finally, Garcia
et al. (2024) did not investigate the detectability of the same event through a hybrid balloon-airglow
network.920

Kenda (2018) summarized the wave equations required to approximate the neutral-to-airglow
coupling by assuming a purely vertically plane wave vz(z, t) (Section 4.3 Kenda, 2018). Their derivation
is presented in SI 11. However, these equations did not include the frequency-dependent attenuation
terms. In order to account for frequency-dependent attenuation, we integrate the absorption coefficient
α and bottom ground velocity along a vertical path such that925

F [vz(Mw, r,z, t)] = F
[
vz(Mw, r,0, t̃(t,z))

]
A(z,f), (D1)

t̃(t,z) = t −
∫
z

dz/c(z), (D2)

A(z,f) =
[

ρ(0)
ρ(z)

]1/2
e

−
∫

z
α(f,z)dz

, (D3)

where F is the Fourier transform, and vz(Mw, r,0, t) (m/s) is the ground velocity perturbation, for
an event at a distance r and a magnitude Mw, computed with scaled seismic Green’s functions as930

defined in Section 2.2 such that vz,0 = ρbcbpb. A(z,f) is the amplification due to density decrease
with altitude and attenuation effects. The Airglow Signal-to-Noise Ratio SNRairglow is then defined
as the ratio of emitted photons to shot noise σshot noise. Emitted photons can be computed as a
disturbance over the total number of photons emitted by a given layer P where the disturbance is
given by the Volume Emission Rate (VER) perturbation over the background VER produced by935
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acoustic waves described by

SNRairglow(Mw, r) = maxt [I(Mw, r, t)]
zmax∫

zmin

VER(z) dz

P

σshot noise
(D4)

I(Mw, r, t) =
zmax∫

zmin

δVER(Mw, r,z, t) dz, (D5)

where the shot noise is assumed to be the dominant source of noise and is given by σshot noise ≈
√

P ,
the total numbers of photons in each layer are P 1.27 ≈ 2e4, P 4.28 ≈ 3.5e5, and δVER is given for940

1.27 µm and 4.28 µm layers as

δVER1.27(Mw, r,z, t) = F−1
[
− τ

1 + iωτ
F

[
VER(z) ∂

∂z
vz(Mw, r,z, t)

]]
(D6)

δVER4.28(Mw, r,z, t) = α(γ − 1)T(z)VER(z)
[

∂

∂z
uz(Mw, r,z, t) + uz(Mw, r,z, t)

ρ0(z)
∂

∂z
ρ0(z)

]
(D7)

−uz(Mw, r,z, t) ∂

∂z
VER(z), (D8)

where F−1 is the inverse Fourier transforms, τ = 4460 s (Kenda, 2018, Section 4.3) is the photon945

radiative lifetime, ω = 2πf is the pulsation, α = 1% is the airglow sensitivity to a temperature
perturbation in the 4.28 µm layer, and u(z, t) (m) is the displacement perturbation defined by
equation (D3).

To incorporate airglow data within the same probabilistic framework, we re-scaled the surface
area defined by source-station distances in equation 7 to account for both the higher altitude of950

propagation to the airglow layer as well as the conversion from acoustic wave to airglow. Scaled
source-receiver distances R = r + r̃ for airglow can be found by solving for r̃, i.e., the horizontal
distance parameter for which pressure SNR at the balloon altitude and at a distance r is equal to
airglow SNR at a distance r + r̃:

TL(Mw,R = r + r̃)
σn

= βSNRairglow(Mw, r), (D9)955

where β is the pixel binning factor. One of the main advantages of airglow imagers is the large
Field Of View (FOV), with a 60 degrees radius centered around the satellite location for an orbit
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at 45000 km altitude (Didion et al., 2018). Each pixel in the airglow imager’s FOV becomes an
independent sensor providing timeseries of airglow perturbations which are proxies for atmospheric
velocities or temperatures. Pixels can then be binned by a factor β to increase the SNR. Binning960

using β × β pixels increases the SNR by a factor β.

Finally, to account for the large FOV, we modify the surface area from airglow location xairglow

up to a distance r such that

Sairglow(r,xairglow) = S(r − rairglow
0 ,xairglow) ∪

[
Sairglow

FOV (xairglow) ∩ Sairglow
AEA (xairglow)

]
, (D10)

where Sairglow
FOV (xairglow) is a surface cap of radius rairglow

0 ≈ 70◦ centered around the airglow imager965

location x and Sairglow
AEA (xairglow) is the Airglow Emission Area (AEA) for each airglow layer. For the

1.27 µm emission, the AEA is centered on the equatorial point at 10:00 local time and covers an
angular radius of about 60 degrees around that point and for the 4.28 µm emission, the AEA is
centered on the equatorial point at 12:00 local time and covers an angular radius of about 70 degrees
around that point (Garcia et al., 2024).970

Current mission concepts considering a stable high-altitude orbit at R = 45000 km (Didion
et al., 2018), which corresponds to an orbital velocity of about v =

√
GM/r ≈ 3.2 km/s, where G is

the gravitational constant, M the mass of Venus, and r = R + Rv the distance from the center of
Venus to the spacecraft where Rv is Venus’ radius. This velocity translates into a ground velocity of
about 2πr/v ≈ 0.3 km/s, i.e., 35 h to complete one orbit. The spacecraft will therefore probe both975

dayglow and airglow within a 2 day span.
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